Goal-Directed Inductive Learning: Trading off Accuracy for Reduced Error Cost
نویسنده
چکیده
In this paper I present issues and results pertaining to goal-directed inductive machine learning, in particular, inductive learning that takes into account the cost of the errors made when the learned concept description is used. Previous work introduced the notion that learning programs should be able to take as input different policies, so that they can learn under different pragmatic considerations. This paper shows that inductive learning can trade off classification accuracy for a reduction in cost, when the learning program uses a cost function to evaluate its learned knowledge. In particular, I discuss costs related to risks, in the classic mushroom and breast-cancer domains, and monetary costs in a domain of diagnosing errors in the local loop of the telephone network.
منابع مشابه
Learned Prioritization for Trading Off Accuracy and Speed
Users want inference to be both fast and accurate, but quality often comes at the cost of speed. The field has experimented with approximate inference algorithms that make different speed-accuracy tradeoffs (for particular problems and datasets). We aim to explore this space automatically, focusing here on the case of agenda-based syntactic parsing [12]. Unfortunately, off-the-shelf reinforceme...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملSpeed/Accuracy Trade-Off between the Habitual and the Goal-Directed Processes
Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In this paper, we assume that the ...
متن کاملTrading-Off Cost of Deployment Versus Accuracy in Learning Predictive Models
Predictive models are finding an increasing number of applications in many industries. As a result, a practical means for trading-off the cost of deploying a model versus its effectiveness is needed. Our work is motivated by risk prediction problems in healthcare. Cost-structures in domains such as healthcare are quite complex, posing a significant challenge to existing approaches. We propose a...
متن کاملTypes of Cost in Inductive Concept Learning
Inductive concept learning is the task of learning to assign cases to a discrete set of classes. In real-world applications of concept learning, there are many different types of cost involved. The majority of the machine learning literature ignores all types of cost (unless accuracy is interpreted as a type of cost measure). A few papers have investigated the cost of misclassification errors. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002